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The necessity of dealing with uncertainty in real world problems has been a long-term research
challenge that has originated different methodologies and theories. Fuzzy sets along with their
extensions, such as type-2 fuzzy sets, interval-valued fuzzy sets, and Atanassov’s intuitionistic
fuzzy sets, have provided a wide range of tools that are able to deal with uncertainty in different
types of problems. Recently, a new extension of fuzzy sets so-called hesitant fuzzy sets has been
introduced to deal with hesitant situations, which were not well managed by the previous tools.
Hesitant fuzzy sets have attracted very quickly the attention of many researchers that have proposed
diverse extensions, several types of operators to compute with such types of information, and
eventually some applications have been developed. Because of such a growth, this paper presents
an overview on hesitant fuzzy sets with the aim of providing a clear perspective on the different
concepts, tools and trends related to this extension of fuzzy sets. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

A number of real-world problems are extremely complex, since they involve
human beings and mechanical, technological, and other elements. Consequently,
these problems and even simpler ones may have to consider diverse uncertainties
whose handling is crucial for obtaining satisfactory solutions. Uncertainty can be
considered of different types such as, randomness,1 fuzziness,2 indistinguishability,3

and incompleteness.4

Our interest is focused on fuzzy sets theory2 and fuzzy logic that allow
to manage imprecise and vague information. Such vagueness is reflected by the

∗Author to whom all correspondence should be addressed; e-mail: rmrodrig@ujaen.es

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 29, 495–524 (2014)
C© 2014 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com. • DOI 10.1002/int.21654
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membership degree of the objects belonging to a concept.5 Fuzzy sets theory has
been widely and successfully applied in many different areas to handle such a type
of uncertainty. Nevertheless, it presents limitations to deal with imprecise and vague
information when different sources of vagueness appear simultaneously. Owing
to this fact and to overcome such limitations, different extensions of fuzzy sets
have been introduced in the literature such as (i) Atanassov’s intuitionistic fuzzy
sets (IFS)6 that allow to simultaneously consider the membership degree and the
nonmembership degree of each element, (ii) type-2 fuzzy sets (T2FS)7 that incor-
porate uncertainty in the definition of their membership function through the use
of a fuzzy set over the unit interval to model it, (iii) interval-valued fuzzy sets
(IVFS),8,9 in which the membership degree of an element is given by a closed
subinterval of the unit interval in such a way that the length of that interval may
be understood as a measure of the lack of certainty for building the precise mem-
bership degree of the element, (iv) fuzzy multisets10 based on multisets and where
the membership degree of each element is given by a subset of [0, 1], and so
forth.

Despite the previous extensions overcome in different ways, the managing of
simultaneous sources of vagueness, Torra11 introduced a new extension of fuzzy
sets so-called hesitant fuzzy sets (HFSs), motivated for the common difficulty that
often appears when the membership degree of an element must be established and
the difficulty is not because of an error margin (as in IFS) or due to some possibility
distribution (as in T2FS), but rather because there are some possible values that
make to hesitate about which one would be the right one. This situation is very usual
in decision making when an expert might consider different degrees of membership
{0.67,0.72,0.74} of the element x in the set A.

HFSs have attracted the attention of many researchers in a short period of
time because hesitant situations are very common in different real-world problems,
and this new approach facilitates the management of uncertainty provoked by hes-
itation. A deep revision of the specialized literature shows the quick growth and
applicability of HFSs, which have been extended from different points of view,
quantitative12–15 and qualitative16 (because hesitation can arise modeling the uncer-
tainty in both ways). in addition, many operators for HFSs and their extensions have
been introduced to deal with such a type of information in different applications
where decision making has been the most remarkable one.

The aim of this paper is to develop an extensive and intensive overview about
HFSs paying attention not only to theoretical concepts including extensions, com-
putational tools, or applications in which HFSs have provided satisfactory results
but also fixing a consistent notation.

The paper is organized as follows: Section 2 introduces the concept of HFS,
some basic operators, and their properties. Section 3 revises extensions of HFSs.
Sections 4 and 5 present different aggregation operators and measures for HFSs,
respectively. In Section 6, a deep review of applications which use hesitant infor-
mation is presented. Section 7 points out the trends and directions of the hesitant
context, and finally the paper is concluded in Section 8.
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2. HESITANT FUZZY SETS: CONCEPTS, BASIC OPERATIONS, AND
PROPERTIES

HFS is a novel and recent extension of fuzzy sets that aims to model the uncer-
tainty originated by the hesitation that might arise in the assignment of membership
degrees of the elements to a fuzzy set.

To show and understand the impact and usefulness of HFSs together with their
extensions, operators, and applications, in this section different concepts about HFSs
are revised, including basic operations and their properties. An important effort has
been done to clarify and make consistent the notation about such concepts that
should be used from now on to avoid misunderstandings and mistakes regarding
HFSs.

2.1 Concepts

A HFS is defined in terms of a function that returns a set of membership values
for each element in the domain.

DEFINITION 111. Let X be a reference set, a HFS on X is a function h that returns a
subset of values in [0,1]:

h : X → ℘([0, 1]) (1)

A HFS can also be constructed from a set of fuzzy sets.

DEFINITION 211. Let M = {μ1, . . . , μn} be a set of n membership functions. The HFS
associated with M , hM , is defined as

hM : X → ℘([0, 1])

hM (x) =
⋃
μ∈M

{μ(x)} (2)

where x ∈ X.

It is remarkable that this definition is quite suitable to decision making, when
experts have to assess a set of alternatives. In such a case, M represents the assess-
ments of the experts for each alternative and hM the assessments of the set of experts.
However, note that it only allows to recover those HFSs whose memberships are
given by sets of cardinality less than or equal to n.

Afterward, Xia and Xu17 completed the original definition of HFS by including
the mathematical representation of a HFS as follows:

E = {〈x, hE(x)〉 : x ∈ X},

where hE(x) is a set of some values in [0,1], denoting the possible membership
degrees of the element x ∈ X to the set E. For convenience, Xia and Xu noted
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h = hE(x) and called it hesitant fuzzy element (HFE) of E and H = ∪hE(x), the
set of all HFEs of E.

In some papers, the concepts HFS and HFE are used indistinctively,13 even
though both concepts are different. A HFS is a set of subsets in the interval [0,1],
one set for each element of the reference set X. A HFE is one of such sets, the one
for a particular x ∈ X.

Given a function φ on n HFEs, the following definition expresses how to build
a function φ′ on HFS from φ:

DEFINITION 3. Let {H1, . . . , Hn} be a set of n HFSs on X and φ an n-ary function
on HFEs, we define

φ′(H1, . . . , Hn)(x) = φ(H1(x), . . . , Hn(x)). (3)

However, we can define functions for HFSs that do not correspond to functions
on HFEs. The following definition illustrates this case:

DEFINITION 4. Let {H1, . . . , Hn} be a set of n HFSs on X,

φ′(H1, . . . , Hn)(x) = (maxi max(Hi) + mini min(Hi))

2
∧ ∪iHi(x) (4)

where for any α ∈ [0, 1], α ∧ h corresponds to {s|s ∈ h, s ≤ α} (this corresponds
to h−

α using the notation in Ref. 11).

More recently, Bedregal et al.18 have presented a particular case of HFS so-
called a typical hesitant fuzzy set (THFS), which considers some restrictions.

DEFINITION 518. Let H ⊆ ℘([0, 1]) be the set of all finite nonempty subsets of the
interval [0,1], and let X be a nonempty set. A THFS A over X is given by Equation
1 where hE : X → H.

Each hE(x) ∈ H is called a typical hesitant fuzzy element of H (THFE).

Remark 1. To use HFS properly, it is recommended to consider finite and nonempty
HFS, that is, THFS. In this paper, we consider finite and nonempty HFS although
we will keep the original names, HFS and HFE.

2.2 Basic Operations

In the seminal paper of HFSs,11 Torra introduced initially several basic opera-
tions to deal with HFEs, although originally were not called HFEs. These definitions
follow the approach of Definition 3, that is, a function for HFSs defined in terms of
a function for HFEs.

DEFINITION 611. Given a HFE, h, its lower and upper bounds are

h− = min{γ |γ ∈ h} (5)

h+ = max{γ |γ ∈ h} (6)

International Journal of Intelligent Systems DOI 10.1002/int



HESITANT FUZZY SETS 499

DEFINITION 711. Let h be a HFE, its complement is defined as

hc =
⋃
γ∈h

{1 − γ } (7)

DEFINITION 811. Let h1 and h2 be two HFEs, their union is defined as

h1 ∪ h2 = ∪γ1∈h1,γ2∈h2max{γ1, γ2} (8)

DEFINITION 911. Let h1 and h2 be two HFEs, their intersection is defined as

h1 ∩ h2 = ∩γ1∈h1,γ2∈h2min{γ1, γ2} (9)

Torra also discussed the relation between Atanassov’s IFS and HFS and proved
that the envelope of a HFS constructed from the envelope of a HFE is an Atanassov’s
IFS.

DEFINITION 106. Let X be a reference set, an Atanassov’s IFS A on X is defined by

A = {〈x, μA(x), νA(x)〉|x ∈ X} (10)

where the values μA(x) and νA(x), belonging to [0, 1], represent the membership
degree and nonmembership degree of the element x to the set A, respectively, with
the condition 0 ≤ μA(x) + νA(x) ≤ 1, ∀x ∈ X.

The envelope of a HFE is represented in the following definition:

DEFINITION 1111. Let h be a HFE, the Atanassov’s IFS Aenv(h), is defined as the
envelope of h, where Aenv(h) can be represented as

Aenv(h) = {〈h−, 1 − h+〉} (11)

A possible application of HFEs is in decision-making problems defined in
quantitative contexts, where experts might hesitate among different values to assess
alternatives or criteria. Thus, it is necessary to define aggregation operators to
aggregate HFEs. For this reason, Torra and Narukawa19 proposed an extension
principle that extends functions to HFS. This extension allows exporting operations
on fuzzy sets to HFSs.

DEFINITION 1219. Let E = {H1, . . . , Hn} be a set of n HFSs and � a function,
� : [0, 1]n → [0, 1], we then export � on fuzzy sets to HFSs defining

�E = ∪γ∈H1(x)×...×Hn(x){�(γ )} (12)

This definition also follows the approach in Definition 3
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An example of the extension for the Arithmetic mean by using the previous
definition is

Example 1. Let H1(x) = {0.5, 0.6, 0.7} and H2(x) = {0.5, 0.6} be two HFSs, the
Arithmetic mean (AM), of H1(x) and H2(x) is defined as follows:

AMH1(x),H2(x) = ∪γ∈H1(x)×···×Hn(x){AM(γ )} = {AM(0.5, 0.5)} ∪
{AM(0.5, 0.6)} ∪ {AM(0.6, 0.5)} ∪ {AM(0.6, 0.6)} ∪ {AM(0.7, 0.5)} ∪
{AM(0.7, 0.6)} = {0.5} ∪ {0.55} ∪ {0.6} ∪ {0.65} = {0.5, 0.55, 0.6, 0.65}

Note that the properties on � lead to related properties on �E . For example,
commutativity and associativity of � leads to commutativity and associativity of
�E . Similarly, we can give a monotonicity condition for �E when � is monotonic.
This is formalized in the following definitions:

DEFINITION 13. Given two HFSs H1 and H2 on X of the same cardinality, we define
that H1 ≥ H2 if H1(x) ≥ H2(x) for all x. Note that H1(x) and H2(x) are HFEs.
Here, h1 ≥ h2 for HFEs h1 and h2 if h

σ (j )
1 ≥ h

σ (j )
2 for all j = {1, . . . , |H1|} where

hσ (j ) is the j th element in h when they are ordered in a decreasing order.

DEFINITION 14. Let φ be a function on HFSs such that the cardinality of φ is the
same for all HFSs. We then say that φ is monotonic when φ(E) ≥ φ(E′) for all E =
{H1, . . . , Hn} and E′ = {H ′

1, . . . , H
′
n} such that H ′

i ≥ Hi for all i = {1, . . . , n}.
PROPOSITION 1. Let E = {H1, . . . , Hn} and E′ = {H ′

1, . . . , H
′
n} such that H ′

i ≥ Hi

for all i = {1, . . . , n}. Then, if � is a monotonic function, �E is monotonic.

To establish an order between HFEs, Xia and Xu introduced a comparison law
by defining a score function, which is defined under the following assumptions:

� The values of all the HFEs are arranged in an increasing order.
� The HFEs have the same length when they are compared. Therefore, if any two HFEs

have different lengths, the shorter one will be extended by adding the maximum element
until both HFEs have the same length.

DEFINITION 1517. Let h be a HFE, the score function of h is defined as follows:

s(h) = 1

l(h)

∑
γ∈h

γ, (13)

where l(h) is the number of elements in h.

Let h1 and h2 be two HFEs, then
if s(h1) > s(h2), then h1 > h2;
if s(h1) = s(h2), then h1 = h2.
Nevertheless, Farhadinia20 pointed out that such a function cannot discriminate

some HFEs although they are apparently different. Let see the following example:
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Example 2. Let h1 = {0.2, 0.3, 0.7} and h2 = {0.1, 0.4, 0.7} be two HFEs, the results
obtained using the score function are the same in spite of h1 and h2 are different.

s(h1) = 1

3
(0.2 + 0.3 + 0.7) = 0.4

s(h2) = 1

3
(0.1 + 0.4 + 0.7) = 0.4

Therefore, it was introduced a new score function for HFEs.

DEFINITION 1620. Let h = ⋃
γ∈h{γ } = {γj }l(h)

j=1 be a HFE, the score function S of h
is defined by

S(h) =

l(h)∑
j=1

δ(j )γj

l(h)∑
j=1

δ(j )

(14)

where {δ(j )}l(h)
j=1 is a positive-valued monotonic increasing sequence of index j .

Example 3. Following the previous example, if we use the new score function, the
results are

S(h1) = 1 ∗ 0.2 + 2 ∗ 0.3 + 3 ∗ 0.7

1 + 2 + 3
= 0.48

S(h2) = 1 ∗ 0.1 + 2 ∗ 0.4 + 3 ∗ 0.7

1 + 2 + 3
= 0.5

Remark 2. The new score function defined by Farhadinia allows comparing HFEs
that cannot be compared by the score function introduced by Xia and Xu. However,
it does not solve the problem (see the following counterexample).

Example 4. Let h1 = {0.2, 0.5} and h2 = {0, 0.6} be two HFEs, the results of ap-
plying the new score function are the following ones:

S(h1) = 1 ∗ 0.2 + 2 ∗ 0.5

1 + 2
= 0.4

S(h2) = 1 ∗ 0 + 2 ∗ 0.6

1 + 2
= 0.4

The result obtained is the same, despite h1 and h2 are different.

Note that Definition 15 is an arithmetic mean of the HFEs (i.e., s(h) is the
arithmetic mean of values in h) and Definition 16 is another aggregation operator of
the HFEs with weights δ(j )/

∑
δ(j ). Other aggregation operators (see, e.g., Ref. 21)

can be used for the same purpose.
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2.3 Properties

To conclude this section, some relevant properties of HFEs are reviewed.

PROPOSITION 211. Let h be a HFE and Aenv(h) its envelope, then

Aenv(hc) = (Aenv(h))c

Proof. ⊆
Aenv(hc) = 〈min (1 − h), 1 − max (1 − h)〉 = 〈1 − max h, 1 − 1 +

min h)〉 = 〈1 − h+, h−〉
⊇
(Aenv(h))c = 〈h−, 1 − h+〉c = 〈1 − h+, h−〉

�
PROPOSITION 311. Let h1 and h2 be two HFEs, then

Aenv(h1 ∪ h2) = Aenv(h1) ∪ Aenv(h2)

Proof. ⊆
Aenv(h1 ∪ h2) = 〈max(h−

1 , h−
2 ), min(1 − h+

1 , 1 − h+
2 )〉

⊇
Aenv(h1) ∪ Aenv(h2) = 〈h−

1 , 1 − h+
1 〉 ∪ 〈h−

2 , 1 − h+
2 〉 =

〈max(h−
1 , h−

2 ), min(1 − h+
1 , 1 − h+

2 )〉.
�

PROPOSITION 411. Let h1 and h2 be two HFEs, then

Aenv(h1 ∩ h2) = Aenv(h1) ∩ Aenv(h2)

The proof of the intersection is similar to the union.

PROPOSITION 511. Let H1 and H2 be two HFSs with H (x), a finite nonempty convex
set for all x ∈ X, i.e. H1 and H2 are intuitionistic fuzzy sets, then,

� Hc
1 is equivalent to the complement of Atanassov’s IFS,

� H1 ∪ H2 is equivalent to the union of Atanassov’s IFS,
� H1 ∩ H2 is equivalent to the intersection of Atanassov’s IFS.

The previous propositions prove that the operations defined for HFEs are
consistent with the ones defined for Atanassov’s IFSs. The relationship between
HFEs and fuzzy multisets was also considered in Ref. 11.

3. EXTENSIONS OF HESITANT FUZZY SETS

The concepts, basic operations, and properties defined for HFSs and HFEs cope
with the hesitation of assigning a membership degree of an element to a fuzzy set.
The idea of modeling such a hesitation has been extended together with the previous
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methods and tools to the following three situations: (i) to model the hesitation not
only for the assignment of the membership degree but also for the nonmembership
degree; (ii) to manage the hesitation on membership degrees that are not exactly
defined but expressed by interval values, intuitionistic fuzzy sets, or triangular fuzzy
numbers; (iii) to deal with the hesitation in qualitative settings in which information
is linguistically modeled.

These extensions are further detailed below.

3.1 Dual Hesitant Fuzzy Sets

As we aforementioned, Atanassov’s IFS6 uses two functions to handle the
membership and nonmembership degrees. Zhu et al. proposed the concept of dual
hesitant fuzzy set (DHFS),15 as an extension of HFS to deal with the hesitation both
for the membership degree and nonmembership degree.

A DHFS is defined in terms of two functions that return two sets of membership
and nonmembership values, respectively, for each element in the domain as follows:

DEFINITION 1715. Let X be a set, a DHFS D on X is defined as

D = {< x, h(x), g(x) > |x ∈ X} (15)

where h(x) and g(x) are two sets of values in the interval [0, 1], denoting the
possible membership and nonmembership degrees of the element x ∈ X to the set
D, respectively, with the following conditions:

0 ≤ γ, η ≤ 1, 0 ≤ γ + + η+ ≤ 1

where γ ∈ h(x), η ∈ g(x), γ + = maxγ∈h(x){γ }, and η+ = maxη∈g(x){η} ∀x ∈ X.

For convenience, the pair d(x) = (h(x), g(x)) is called dual hesitant fuzzy
element (DHFE) and noted by d = (h, g).

Example 5. Let X = {x1, x2} be a reference set, then D defined by

D = {〈x1, {0.3, 0.4}, {0.5}〉, 〈x2, {0.2, 0.4}, {0.2, 0.5}〉}

is a DHFS.

Zhu et al. defined some basic operations, such as the complement of a DHFE,
the union, and intersection of two DHFEs. A comparison law was also proposed to
compare DHFEs. To do so, a score function and accuracy function were introduced.

Motivated by the extension principle presented by Torra and Narukawa,19 an
extension principle based on the ordered modular average operator22 was proposed
to develop some basic operations and aggregations operators for DHFEs.15 Further-
more, a practical example of group forecasting was shown. The example represents
assessments by DHFEs.
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3.2 Interval-Valued Hesitant Fuzzy Sets

In many real decision-making problems, the available information is not
enough, since it might be difficult for experts to provide their preferences using
crisp values. A possible solution is to represent such preferences by interval values.
Therefore, keeping in mind the concept of HFS, Chen et al. presented the definition
of interval-valued hesitant fuzzy set (IVHFS),12 as a generalization of HFS in which
the membership degrees of an element to a given set are defined by several possible
interval values.

An IVHFS is defined as follows:

DEFINITION 1812. Let X be a reference set, and I([0,1]) be a set of all closed subin-
tervals of [0,1]. An IVHFS on X is

Ã = {〈xi, h̃A(xi)〉|xi ∈ X, i = 1, . . . , n} (16)

where h̃A(xi) : X → ℘(I ([0, 1])) denotes all possible interval-valued membership
degrees of the element xi ∈ X to the set Ã.

For convenience, h̃A(xi) is called an interval-valued hesitant fuzzy element
(IVHFE), where each γ̃ ∈ h̃A(xi) is an interval and γ̃ = [γ̃ L, γ̃ U ], being γ̃ L and γ̃ U

the lower and upper limits of γ̃ , respectively.

Example 6. Let X = {x1, x2} be a reference set a IVHFS Ã, could be as follows:

Ã = {〈x1, {[0.1, 0.2], [0.3, 0.5]}〉, 〈x2, {[0.2, 0.4], [0.5, 0.6], [0.7, 0.9]}〉}

Note that when the upper and lower limits of the interval values are equal, the
IVHFS becomes a HFS.

Chen et al. presented some operational laws, such as the union, intersection, and
complement and studied their properties. They also defined a score function to obtain
an order between two IVHFEs. To calculate the distance between two IVHFEs,
two distance measures that can be considered as extensions of the Hamming and
Euclidean distances were proposed. A series of specific aggregation operators for
IVHFEs such as, the interval-valued hesitant fuzzy weighted averaging, interval-
valued hesitant fuzzy weighted geometric, interval-valued hesitant fuzzy ordered
weighted averaging, interval-valued hesitant fuzzy ordered weighted geometric and
their generalizations were defined in Ref. 12. In addition, a group decision-making
approach based on interval-valued hesitant preference relations was developed.

3.3 Generalized Hesitant Fuzzy Sets

Sometimes, experts might hesitate among several possible membership degrees
with the form of both crisp values and interval values in [0,1]. To handle directly this
type of assessments in a decision-making process, Qian et al. extended the concept
of HFS by Atanassov’s IFS. The idea consists of representing the membership as
the union of some Atanassov’s IFS.6 To define this new extension called generalized
hesitant fuzzy set (GHFS), authors use Equation 2 introduced by Torra.
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DEFINITION 1913. Given a set of n membership functions,

M = {αi = (μi, υi)|0 ≤ μi, υi ≤ 1, 0 ≤ μi + υi ≤ 1, i = {1, . . . , n}}, (17)

the GHFS associated with M, hM , is defined as follows:

hM (x) = ∪(μi (x),υi (x))∈M (μi(x), υi(x)). (18)

Remark 3. Notice that a GHFS extends slightly the concept of DHFS15 as we can
see in the following example:

Example 7. Let X = {x1} be a reference set, then

hM (x1) = {(0.5, 0.3), (0.6, 0.3), (0.4, 0.5)}

is a GHFS.

In this example, γ + = 0.6 and η+ = 0.5, therefore 0.6 + 0.5 > 1; it does not
achieve the restriction to be a DHFS.

Similar to Ref. 11, it was defined the complement, union and intersection of
GHFSs, as well as, the envelope of a GHFS. Some properties and relationships with
HFSs were also discussed in Ref. 13. A comparison law was introduced to compare
two GHFSs according to the score and consistency functions defined for this type
of information.

Usually, in decision-making problems, it is necessary to use aggregation tech-
niques to aggregate the assessments provided by experts and obtain collective values
for the alternatives to select the best one. Therefore, to aggregate a set of GHFSs it
was proposed an extension principle that extends the operations for Atanassov’s IFSs
to GHFSs. A decision support system framework based on GHFS was developed to
support the activities carried out in decision-making processes.

3.4 Triangular Fuzzy Hesitant Fuzzy Sets

Yu pointed out in Ref. 14 that sometimes it is difficult for experts to express
the membership degrees of an element to a given set only by crisp values between
0 and 1. To model this hesitation, Yu introduced the concept of triangular fuzzy
hesitant fuzzy set (TFHFS), whose membership degrees of an element to a fuzzy
set are expressed by several triangular fuzzy numbers.23

DEFINITION 2014. Let X be a fixed set, a TFHFS Ẽ on X is defined in terms of a
function f̃Ẽ(x) that returns several triangular fuzzy values,

Ẽ = {< x, f̃Ẽ(x) > |x ∈ X} (19)

where f̃Ẽ(x) is a set of several triangular fuzzy numbers, which express the possible
membership degrees of an element x ∈ X to a set Ẽ. f̃Ẽ(x) is called triangular fuzzy
hesitant fuzzy element (TFHFE) and noted (̃f )Ẽ(xi) = {(ξ̃ L, ξ̃M, ξ̃U )|ξ̃ ∈ f̃Ẽ(xi)}.
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Example 8. Let X = {x1, x2} be a reference set, Ẽ defined by

Ẽ = {〈x1, {(0.1, 0.3, 0.5), (0.4, 0.6, 0.8)}〉, 〈x2, {(0.1, 0.2, 0.3)}〉}

is a TFHFS.

Note that if ξ̃ L = ξ̃M = ξ̃ U , then the TFHFS becomes a HFS.
Some basic operations such as the addition and multiplication of TFHFEs were

defined. A comparison law was proposed by means of the definition of a score and
accuracy functions. Different specific aggregation operators for TFHFEs such as,
triangular fuzzy hesitant fuzzy weighted averaging, triangular fuzzy hesitant fuzzy
weighted geometric and their generalizations were also introduced.

Furthermore, a multicriteria decision-making model in which experts can ex-
press their assessments by using TFHFEs was presented and applied to solve a
teaching quality evaluation problem.

3.5 Hesitant Fuzzy Linguistic Term Sets

The previous extensions suit problems that are defined in quantitative situations,
but uncertainty is often because of the vagueness of meanings that are used by experts
in problems whose nature is rather qualitative. Different linguistic models have been
presented in the literature24–28 to model linguistic information. Nevertheless, when
experts face decision situations with high degree of uncertainty, they often hesitate
among different linguistic terms and would like to use more complex linguistic
expressions which cannot be expressed with the classical linguistic approaches.
This limitation is due to the use of linguistic terms defined a priori, and because
most linguistic approaches model the information by using only one linguistic
term. To overcome this limitation, different proposals have been introduced in the
literature29–33 to provide more flexible and richer expressions, which can include
more than one linguistic term. Notwithstanding, neither of them is adequate to fulfill
the necessities and requirements of experts in hesitant situations. Consequently,
bearing in mind the idea under the HFS,11Rodrı́guez et al. proposed the concept of
hesitant fuzzy linguistic term set (HFLTS),16 which keeps the basis on the fuzzy
linguistic approach34 and extends the idea of HFS to linguistic contexts.

Formally, a HFLTS is defined as follows:

DEFINITION 2116. Let S = {s0, . . . , sg} be a linguistic term set, a HFLTS HS , is
defined as an ordered finite subset of consecutive linguistic terms of S:

HS = {si, si+1, . . . , sj } such that sk ∈ S, k ∈ {i, . . . , j}

Example 9. Let S be a linguistic term set, S = {s0 : nothing, s1 : very low, s2 :
low, s3 : medium, s4 : high, s5 : very high, s6 : perf ect}, and ϑ a linguistic vari-
able, then HS(ϑ) defined by

HS(ϑ) = {high, very high, perf ect}

is a HFLTS.
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Remark 4. The use of consecutive linguistic terms in HFLTS is because of a cognitive
point of view in which in a discrete domain with a short number of terms (usually
not more than nine) makes no sense to hesitate among arbitrary and total different
linguistic terms, {low, high, very high} and not hesitate in their middle terms.
The use of comparative linguistic expressions35 is a clear example of hesitation
among several linguistic terms by human beings. Using the HFLTS as the natural
representation for managing the comparative expressions in decision making.

Rodrı́guez et al. introduced some basic operations for HFLTS, such as the com-
plement, union, and intersection and studied diverse properties over them. Similarly
to the concept of envelope of a HFS, it was defined the envelope of a HFLTS. This
envelope was used to propose a comparison law for HFLTSs. Besides, two symbolic
aggregation operators, min upper and max lower were developed to aggregate
HFLTSs.

The concept of HFLTS was introduced as something that can be used directly by
experts to elicit several linguistic terms, but such elements are not similar to human
beings’ way of thinking. Therefore, Rodrı́guez et al. proposed the use of context-free
grammars to generate linguistic expressions similar to human beings’ expressions
that are easily represented by HFLTS. A context-free grammar GH , which may
generate comparative linguistic expressions close to the expressions used by experts
in decision-making problems, was introduced in Ref. 16 and extended in Ref. 35.

DEFINITION 2235. Let GH be a context-free grammar and S = {s0, . . . , sg} a linguis-
tic term set. The elements of GH = (VN, VT , I, P ) are defined as follows: VN =
{〈primary term〉, 〈composite term〉, 〈unary relation〉, 〈binary relation〉,

〈conjunction〉}
VT = {lower than, greater than, at least, at most, between, and, s0, s1,

. . . , sg}
I ∈ VN

P = {I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉〈primary term〉|〈binary relation〉
〈primary term〉〈conjunction〉〈primary term〉
〈primary term〉 ::= s0|s1| . . . |sg

〈unary relation〉 ::= lower than|greater than|at least |at most
〈binary relation〉 ::= between
〈conjunction〉 ::= and}
To obtain HFLTS from the comparative linguistic expressions generated by the

context-free grammar GH , a transformation function EGH
was proposed.

The use of comparative linguistic expressions based on context-free grammars
and HFLTS has been applied to different decision-making problems.16,35–37

Although the definition of HFLTS is very recent, it has received a lot of
attention by other researchers in the community, and there are already different
proposals based on this definition.36–40

Lee and Cheng have pointed out that the multicriteria decision making- model
proposed in Ref. 16 is too complex to solve decision-making problems. Therefore,
a new decision-making model based on likelihood-based comparison relation of
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HFLTS has been introduced.38 To do so, the concept of likelihood-based comparison
relations of HFLTS and a similarity measure was introduced.

Zhu and Xu have introduced the concept of hesitant fuzzy linguistic prefer-
ence relation (HFLPR),40 which is a matrix B = (bij )n×n ⊂ X × X where bij is
a HFLTS. Owing to the importance of the consistency measures using preference
relations, such authors have defined some consistency measures for the HFLPR and
a consistency index that establishes the consistency thresholds of the HFLPR to
measure whether a HFLPR is of acceptable consistency. In addition, two optimiza-
tion methods have been developed to improve the consistency in the HFLPR when
the consistency is unacceptable. Zhang et al. also proposed a discrete region-based
approach to improve the consistency of the pairwise comparison matrix by using
HFLTS.41

Wei et al. indicate in Ref. 39 that the comparison method for HFLTS presented
in Ref. 16 might provide results that do not correspond with the common sense,
because if two HFLTSs have some common linguistic terms, it does not seem rea-
sonable to say that one HFLTS is absolutely superior to another. To overcome this
shortcoming, a new comparison method for HFLTSs that uses the probability theory
is introduced. These authors also presented two new linguistic aggregation opera-
tors for HFLTSs, which take into account the importance of criteria and/or expert in
decision-making problems. Such operators generalize the linguistic weighted aver-
age and linguistic ordered weighted average to HFLTSs. More aggregation operators
can be found in Ref. 42.

Recently, Liu and Rodrı́guez have pointed out37 that the semantics of the com-
parative linguistic expressions based on a context-free grammar and HFLTSs should
be represented by fuzzy membership functions instead of linguistic intervals,16 since
the concept of HFLTS is based on the fuzzy linguistic approach, and the linguistic
terms of the fuzzy linguistic approach are represented by a syntax and fuzzy seman-
tics. Therefore, a new fuzzy representation for comparative linguistic expressions
based on a fuzzy envelope has been introduced.37

3.6 Summary on HFSs Extensions

In this section, we have reviewed existing extensions of HFS. We have seen
that one of the extensions was based on considering hesitancy on a set of linguistic
terms. This has opened a new line of research. Other approaches consider some
degrees of fuzziness on the values in the interval [0,1]. The latter class can be seen
as different variations of type-2 HFS. Each value is replaced by a fuzzy set (an
interval or a triangular fuzzy set). Type-n HFS is a natural extension of all these
approaches. Note that type-n HFS can be represented by type (n + 1) fuzzy sets.

4. AGGREGATION OPERATORS FOR HFES

As we will see in Section 6, HFEs have been applied in different fields
being decision making the most remarkable one. A basic scheme of a decision-
making problem mainly consists of two phases, aggregation and exploitation (see
Figure 1).
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Figure 1. Basic scheme of a decision-making problem.

In the aggregation phase, the information is grouped to reflect a collective value
for each alternative or criterion, and, in the exploitation phase, the best alternative
is selected as a solution to the decision problem by using the collectives values
obtained in the previous phase. Thus, different aggregation techniques have been
developed to carry out decision-making processes in which experts express their
assessments by using HFEs.

Very relevant examples of aggregation operators often used for decision making
are based on the arithmetic mean, geometric mean, and integrals. Many generaliza-
tions and extensions of these operators have been proposed thereafter to aggregate
different types of information, such as IVFS, Atanassov’s IFS, etc. We will focus
on the aggregation operators defined for HFEs.

Xia and Xu presented in17 two main aggregation operators, such as hesitant
fuzzy weighted averaging and hesitant fuzzy weighted geometric, which are defined
as follows:

DEFINITION 2317. Let hi (i = 1, . . . , n) be a collection of HFEs, hi ∈ H , the hesitant
fuzzy weighted averaging (HFWA) operator is a mapping Hn → H such that

HFWA(h1, . . . , hn) = n⊕
i=1

(wihi) = ∪γ1∈h1,...,γn∈hn

{
1 −

n∏
i=1

(1 − γi)
wi

}
. (20)

where w = (w1, . . . , wn)T is a weighting vector with wi ∈ [0, 1] and
∑n

i=1 wi = 1.
In case of w = (1/n, . . . , 1/n)T , then the HFWA operator reduces to the hesitant
fuzzy averaging (HFA) operator:

HFA(h1, . . . , hn) = n⊕
i=1

(
1

n
hi

)
= ∪γ1∈h1,...,γn∈hn

{
1 −

n∏
i=1

(1 − γi)
1/n

}
. (21)

In this definition, ⊕n
i=1(wihi) is a shortcut of the term of the right of

Equation 20.
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DEFINITION 2417. Let hi (i = 1, . . . , n) be a collection of HFEs, the hesitant fuzzy
weighted geometric (HFWG) operator is a mapping Hn → H such that

HFWG(h1, . . . , hn) = n⊗
i=1

h
wi

i = ∪γ1∈h1,...,γn∈hn

{
n∏

i=1

γ
wi

i

}
. (22)

where w = (w1, . . . , wn)T is the weighting vector with wi ∈ [0, 1] and
∑n

i=1 wi =
1. In the case of w = (1/n, . . . , 1/n)T , then the HFWG operator reduces to the
hesitant fuzzy geometric (HFG) operator:

HFG(h1, . . . , hn) = n⊗
i=1

h
1/n
i = ∪γ1∈h1,...,γn∈hn

{
n∏

i=1

γ
1/n
i

}
. (23)

In this definition, ⊗n
i=1 h

wi

i is a shortcut of the term of the right in Equation 22.
Different extensions and generalizations of these operators, such as generalized

hesitant fuzzy weighted averaging, generalized hesitant fuzzy weighted geometric,
hesitant fuzzy ordered weighted averaging, hesitant fuzzy ordered weighted geo-
metric, generalized hesitant fuzzy ordered weighted averaging, generalized hesitant
fuzzy ordered weighted geometric, hesitant fuzzy hybrid averaging, hesitant fuzzy
hybrid geometric, generalized hesitant fuzzy hybrid averaging, and Generalized
hesitant fuzzy hybrid geometric were presented in Ref. 17.

Yu et al proposed in Ref. 43 a new hesitant fuzzy aggregation operator based
on the Choquet integral whose fundamental feature is that it does not only consider
the importance of the elements or their ordered positions but also takes into account
a fuzzy measure used to express the relationship between the information sources
(e.g., experts) that supplied hi .

DEFINITION 2543. Let ρ be a fuzzy measure on X, and hi(i = 1, 2, . . . , n) be a set of
HFEs, the hesitant fuzzy Choquet integral (HFCI) operator is defined as follows.

∫
hidρ = HFCI (h1, . . . , hn) = n⊗

i=1
h

ρ(Bσ (i))−ρ(Bσ (i−1))
σ (i) (24)

where (σ (1), . . . , σ (n)) is a permutation of (1, . . . , n), such that hσ (1) ≥ hσ (2) ≥
. . . , ≥ hσ (n), Bσ (k) = {xσ (j )|j ≤ k}, for k ≥ 1, and Bσ (0) = ∅.

Remark 5. To use the HFCI operator, it is necessary to fix a lineal order on the HFEs.

Motivated by the idea of prioritized aggregation operators, Wei proposed the
hesitant fuzzy prioritized weighted average and hesitant fuzzy prioritized weighted
geometric aggregation operators,44 which take into account different priority levels
for the criteria defined in a multicriteria decision-making problem.
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DEFINITION 2644. Let hi(i = 1, . . . , n) be a set of HFEs, the hesitant fuzzy prioritized
weighted average (HFPWA) operator is defined as follows:

HFPWA(h1, . . . , hn) = n⊕
i=1

⎛
⎜⎜⎝ Tihi

n∑
i=1

Ti

⎞
⎟⎟⎠ (25)

where Ti = ∏i−1
k=1 s(hk)(i = 2, . . . , n), T1 = 1 and s(hk) is the score values of

hk(i = 1, . . . , n).

Based on the HFPWA operator and the geometric mean, it was defined the
hesitant fuzzy prioritized weighted geometric (HFPWG) operator.

DEFINITION 2744. Let hi(i = 1, . . . , n) be a set of HFEs, the HFPWG operator is

HFPWG(h1, . . . , hn) = n⊗
i=1

h

Ti
n∑

i=1
Ti

i (26)

where Ti = ∏i−1
k=1 s(hk)(i = 2, . . . , n), T1 = 1, and s(hk) is the score values of

hk(i = 1, . . . , n).

The generalizations of such operators have been proposed by Yu et al.45

The Bonferroni mean is an aggregation operator very useful in some appli-
cations because it captures the interrelationship between the input arguments. Yu
and Zhou extended this operator to hesitant fuzzy environment and defined the
generalized hesitant fuzzy Bonferroni mean (GHFBM).

DEFINITION 2846. Let p, q, r > 0, and hi(i = 1, . . . , n) be a collection of HFEs on
X, the GHFBMis defined as follows:

GHFBMp,q,r (h1, . . . , hn)

=
(

1

n(n − 1)(n − 2)

(
n⊕

i,j,k=1,i �=j �=k
((hi)

p ⊗ (hj )q ⊗ (hk)r )

)) 1
p+q+r

(27)

Other extensions of Bonferroni mean such as hesitant fuzzy geometric Bon-
ferroni mean, hesitant fuzzy Choquet geometric Bonferroni mean, weighted hesi-
tant fuzzy geometric Bonferroni mean, weighted hesitant fuzzy Choquet geometric
Bonferroni mean and weighted hesitant fuzzy Bonferroni mean were proposed in
Refs. 47 and 48.

Another family of aggregation operators is the quasi-arithmetic means.49 An
extension of such operators to aggregate HFEs has been introduced in Ref. 50.

DEFINITION 2950. Let hi(i = 1, . . . , n) be a set of HFEs and w = (w1, . . . , wn)T

the weighting vector, such that
∑n

i=1 wi = 1 and wi ≥ 0, i = 1, . . . , n. The
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quasi-hesitant fuzzy weighted average (QHFWA) aggregation operator is defined as

QHFWA(h1, . . . , hn) = ∪γσ (i)∈hσ (i),i=1,...,n

{
g−1

(
n∑

i=1

wig(γi)

)}
(28)

where g(γ ) is a continuous strictly monotonic function.

By using the ordered modular average (OMA) proposed by Mesiar and
Mesiarova-Zemankova,22 the QHFWA was generalized as follows:

DEFINITION 3050. Let hi(i = 1, . . . , n) be a set of HFEs and w = (w1, . . . , wn)T the
weighting vector, such that

∑n
i=1 wi = 1 and wi ≥ 0, i = 1, . . . , n. The hesitant

fuzzy modular weighted average (HFMWA) operator is

HFMWA(h1, . . . , hn) = ∪γi∈hi ,i=1,...,n

{
n∑

i=1

wifi(γi)

}
(29)

where fi(i = 1, . . . , n) are strictly continuous monotonic functions.

More extensions of these operators can be found in Ref. 50.
A variety of hesitant fuzzy power aggregation operators and their relationships

are introduced in Refs. 51 and 52.

DEFINITION 3152. Let hi(i = 1, . . . , n) be a set of HFEs, the hesitant fuzzy power
average (HFPA) operator is defined as follows:

HFPA(h1, . . . , hn) = ⊕n
i=1(1 + T (hi))hi

n∑
i=1

(1 + T (hi))
(30)

where T (hi) = ∑n
i=1,i �=j Sup(hi, hj ) and Sup(hi, hj ) are the support for hi from

hj that satisfies the following properties:

� Sup(hi, hj ) ∈ [0, 1],
� Sup(hi, hj ) = Sup(hj , hi), and
� Sup(hi, hj ) ≥ Sup(hs, ht ), if d(hi, hj ) < d(hs, ht ). Being d a distance measure between

two HFEs.

The support (i.e., Sup) is essentially a similarity measure that can be used to
measure the proximity of HFEs. The higher similarity, the smaller distance between
two HFEs, and, therefore, more support each other.

DEFINITION 3252. Let hi(i = 1, . . . , n) be a set of HFEs, the hesitant fuzzy power
geometric (HFPG) operator is defined as follows:

HFPG(h1, . . . , hn) = ⊗n
i=1(1 + T (hi))hi

n∑
i=1

(1 + T (hi))
(31)
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where T (hi) = ∑n
i=1,i �=i Sup(hi, hj ) and Sup(hi, hj ) is the support for hi

from hj .

Diverse extensions and generalizations of these two operators are also presented
in Refs. 51 and 52.

More recently, Bedregal et al.18 have proposed two methodologies to produce
triangular hesitant aggregation functions over all THFS, i.e., for all finite nonempty
subsets of the unitary interval [0,1] (see Definition 5). It has also been introduced
the finite hesitant triangular norms, studying their main properties and analyzing the
action of H-automorphisms over such operators.

Note that most of these definitions can be seen as applications of the extension
principle (Definition 12) with an appropriate function �. For example. Definition
29 corresponds to the extension principle when � is the quasiweighted mean. Note
also that the properties of the function � will be inherited by �E as discussed in
Section 2.

Remark 6. Aggregation operators are a type of monotonic functions, so they are
related to a partial order. However, there is not a linear order for HFS.

5. DISTANCE MEASURES, CORRELATION COEFFICIENTS, AND
INFORMATION MEASURES

This section reviews diverse measures for hesitant fuzzy environment such as
distance and similarity measures, correlation coefficients, and information measures.

5.1 Distance Measures

Distance and similarity measures are important tools for distinguishing the
difference between two objects and have become important due to the significant
applications in diverse fields, such as machine learning, pattern recognition, and deci-
sion making. Several of them are the Hamming, Euclidean, and Hausdorff distances.
These measures have been extended to manage different types of information.

Xu and Xia proposed several distance and similarity measures that satisfy the
following properties.

DEFINITION 3353. Let M and N be two HFSs on X = {x1, . . . , xn}, then the dis-
tance measure between M and N is defined as d(M,N) and satisfies the following
properties:

1. 0 ≤ d(M,N ) ≤ 1;
2. d(M,N ) = 0 iff M = N ;
3. d(M,N ) = d(N,M).

DEFINITION 3453. Let M and N be two HFSs on X = {x1, . . . , xn}, then the simi-
larity measure between M and N is defined as s(M,N) and satisfies the following
properties:
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1. 0 ≤ s(M,N, ) ≤ 1;
2. s(M,N ) = 1 iff M = N ;
3. s(M,N ) = s(N,M).

Based on the Hamming and Euclidean distances, the hesitant normalized Ham-
ming distance and hesitant normalized Euclidean distance were defined.

DEFINITION 3553. Let M and N be two HFSs on X = {x1, . . . , xn}, the hesitant
normalized Hamming distance is defined as follows:

dhnh(M, N ) = 1

n

n∑
i=1

⎡
⎣ 1

lxi

lxi∑
j=1

|hσ (j )
M (xi) − h

σ (j )
N (xi)|

⎤
⎦ (32)

where h
σ (j )
M (xi) and h

σ (j )
N (xi) are the jth largest values in hM (xi) and hN (xi), re-

spectively, and lxi
= max{l(hM (xi)), l(hN (xi))} for each xi ∈ X being l(hM (xi)).

l(hN (xi)) is the number of values of hM (xi) and hN (xi).

Remark 7. In many cases, the number of values of two HFEs is different, l(hM (xi)) �=
l(hN (xi)); therefore, to carry out the computations correctly, it is necessary that the
two HFEs have the same length when they are compared. To do so, Xu and Xia
fixed the following rule:

If the length between two HFEs is different, then the shorter one should be
extended by adding the same value several times until both of them have the same
length. The selection of such a value depends on two points of view: optimistic and
pessimistic. From an optimistic point of view the value added is the maximum value
of the HFE, whereas from a pessimistic point of view the value is the minimum one
of the HFE.

DEFINITION 3653. Let M and N be two HFSs on X = {x1, . . . , xn}, the hesitant
normalized Euclidean distance is defined as follows:

dhne(M, N ) =
⎡
⎣1

n

n∑
i=1

⎛
⎝ 1

lxi

lxi∑
j=1

|hσ (j )
M (xi) − h

σ (j )
N (xi)|2

⎞
⎠

⎤
⎦

1/2

(33)

Equations 32 and 33 can be extended into a generalized hesitant normalized
distance.

DEFINITION 3753. Let M and N be two HFSs on X = {x1, . . . , xn}, the hesitant
normalized Euclidean distance is defined as follows:

dhne(M, N ) =
⎡
⎣1

n

n∑
i=1

⎛
⎝ 1

lxi

lxi∑
j=1

|hσ (j )
M (xi) − h

σ (j )
N (xi)|λ

⎞
⎠

⎤
⎦

1/λ

(34)

where λ > 0.
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And by applying the Hausforff distance to the previous measure, generalized
hesitant normalized Hausdorff distance is obtained.

DEFINITION 3853. Let M and N be two HFSs on X = {x1, . . . , xn}, the generalized
hesitant normalized Hausdorff distance is defined as follows:

dghnh(M, N) =
[

1

n

n∑
i=1

max
j

|hσ (j )
M (xi) − h

σ (j )
N (xi)|λ

]1/λ

(35)

with λ > 0.

Different extensions and generalizations from such definitions were also de-
veloped as well as studied their properties and relations among them.53

The corresponding similarity measures for HFSs can be obtained by means of
the relationship between distance and similarity measure, s(M, N) = 1 − d(M, N).

Based on the distance measures presented in Ref. 53, Xu and Xia proposed
some distance measures for HFEs and discussed some of their properties.54

Zhou and Li pointed out in Ref. 55 that the distance and similarity measures
presented by Xu and Xia53 only satisfy three properties, and they should fulfill
four properties such as the notions of fuzzy sets,56 Atanassov’s IFS,57 IVFS,58 and
T2FS.59 Therefore, Zhou and Li modified the axiom definitions of distance and
similarity measures for HFSs by adding a new property to Definitions 33 and 34.

For the distance measures,

� Let R be a HFS, if M ⊆ N ⊆ R, then, d(M,N ) ≤ d(M,R) and d(N,R) ≤ d(M,R);

For the similarity measures,

� Let R be a HFS, if M ⊆ N ⊆ R, then, s(M,R) ≤ s(M,N ) and s(M,R) ≤ s(N,R);

Zhou and Li proposed some new distance and similarity measures between
HFSs based on the Hamming distance, the Euclidean distance, and Lp metric and
exponential operations. We are focusing on the last two because the other are quite
similar to those proposed by Xu and Xia.53

If the LP metric is applied to the distance measure between HFSs, the hesitant
LP distance is defined as follows:

DEFINITION 3955. Let M and N be two HFSs on X = {x1, . . . , xn}, the hesitant LP

distance is

dhlp(M, N ) = 1

n

n∑
i=1

⎛
⎝ lxi∑

j=1

|hσ (j )
M (xi) − h

σ (j )
N (xi)|p

⎞
⎠

1/p

(36)

with p ≥ 1.
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DEFINITION 4055. Let M and N be two HFSs on X = {x1, . . . , xn}, an exponential-
type distance measure is defined as follows:

dexp(M, N ) = 1 − exp(−d(M, N))

1 − exp(−dmax)
(37)

with d a distance measure53,55 and dmax = max{d(M, N)}.
The similarity measures can be obtained from the distance measures.55

In Ref. 60, it is pointed out that the generalized hesitant fuzzy weighted distance
(GHFWD) and generalized hesitant fuzzy ordered weighted distance (GHFOWD)
measures introduced by Xu and Xia53 have the following drawbacks:

� The GHFWD measure only focuses on the weight of individual distance for each value
of the HFS, but ignores the position weight with respect to the individual distance.

� The GHFOWD measure only takes into account the position weight with respect to the
individual distance and does not consider the weight of the individual distance.

Therefore, GHFWD and GHFOWD measures consider only one type of impor-
tance. To overcome this limitation, Peng et al. presented a novel generalized hesitant
fuzzy synergetic weighted distance measure (GHFSWD), which reflects both the
individual distances and their ordered positions.

DEFINITION 4160. Let M and N be two HFSs on X = {x1, . . . , xn}, then a
GHFSWD measure of M and N is a mapping GHFSWD : Hn × Hn → [0, 1],
which has associated a weighted vector w = {w1, . . . , wn}T , with wi ∈ [0, 1] and∑n

i=1 wi = 1, such that,

GHFSWD(M, N) =

⎛
⎜⎜⎜⎜⎝

n∑
i=1

ωi

(
1
lxi

lxi∑
j=1

|hσ (j )
M (xi) − h

σ (j )
N (xi)|λ

)
wρ(i)

n∑
i=1

ωiwρ(i)

⎞
⎟⎟⎟⎟⎠

1/λ

(38)

where λ > 0, ρ : {1, . . . , n} → {1, . . . , n} is a permutation function such that

( 1
lxi

∑lxi

j=1 |hσ (j )
M (xi) − h

σ (j )
N (xi)|) is the ρ(i)th largest element of the collection

of individual distances ( 1
lxi

∑lxi

j=1 |hσ (j )
M (xi) − h

σ (j )
N (xi)|) (i = 1, . . . , n), and ω =

(ω1, . . . , ωn)T is the corresponding weighting vector of the ( 1
lxi

∑lxi

j=1 |hσ (j )
M (xi) −

h
σ (j )
N (xi)|) (i = 1, . . . , n), with ωi ∈ [0, 1] and

∑n
i=1 ωi = 1 (to compute the weight-

ing vector see61).

Different properties of the GHFSWD measure have been studied in detail in
Ref. 60.
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5.2 Correlation Coefficients

The correlation reflects a linear relationship between two variables. It is an
important measure in data analysis; therefore, diverse correlation coefficients have
been defined for different types of information.62

Chen et al.63 defined the informational energy for HFSs and the corresponding
correlation between HFSs.

DEFINITION 4263. Let M be a HFS on X = {x1, . . . , xn}, the informational energy of
the HFS M is defined as follows:

EHFS(M) =
n∑

i=1

⎛
⎝ 1

l(hM (xi))

lxi∑
j=1

h2
Mσ (j )(xi)

⎞
⎠ (39)

where hMσ (j )(xi) are the jth largest values of hM (xi) and l(hM (xi)) is the number of
values in hM (xi).

Remark 8. In this equation, the ordering of the elements is not relevant because the
sum does change.

DEFINITION 4363. Let M and N be two HFS on X = {x1, . . . , xn}; the correlation
between M and N is defined by

CHFS(M, N ) =
n∑

i=1

⎛
⎝ 1

lxi

lxi∑
j=1

hMσ (j )(xi)hNσ (j )(xi)

⎞
⎠ (40)

where lxi
= max{l(hM (xi)), l(hN (xi))}.

Let M, N be two HFSs, the correlation satisfies:

� CHFS(M,M) = EHFS(M) and
� CHFS(M,N ) = CHFS(N,M).

By using Definitions 42 and 43, the following correlation coefficient is
obtained:

DEFINITION 4463. Let M and N be two HFS on X = {x1, . . . , xn}; the correlation
coefficient between M and N is

CCHFS(M, N) = CHFS(M, N)

[CHFS(M, M)]1/2[CHFS(N, N)]1/2

=

n∑
i=1

(
1
lxi

lxi∑
j=1

hMσ (j )(xi)hNσ (j )(xi)

)
[

n∑
i=1

1
l(hM (xi ))

lxi∑
j=1

h2
Mσ (j )(xi)

]1/2 [
n∑

i=1

(
1

l(hN (xi ))

lxi∑
j=1

h2
Nσ (j )(xi)

)]1/2 (41)
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Other definitions of correlation coefficients for HFSs based on Equation 41 can
be found in Ref. 63. Xu and Xia introduced in Ref. 54 the concept of the correlation
coefficient for HFEs and proposed several correlation coefficient formulas.

5.3 Information Measures

Some information measures such as entropy and cross-entropy have been de-
fined for different types of information. The entropy is the measure of fuzziness64,
and cross-entropy measures the discrimination of information. In Ref. 65, the en-
tropy and cross-entropy for HFEs were developed.

DEFINITION 4565. Let h1 and h2 be two HFEs and h
σ (i)
1 (i = 1, . . . , l(h1)) the ith

smallest value in h1, the entropy on h1 is a real-valued function E : H → [0, 1],
which satisfies the following axioms:

1. E(h1) = 0, iff h1 = 0 or h1 = 1.

2. E(h1) = 1, iff h
σ (i)
1 + h

σ (l−i+1)
1 = 1, for i = {1, . . . , l}.

3. E(h1) ≤ E(h2), if h
σ (i)
1 ≤ h

σ (i)
2 for h

σ (i)
2 + h

σ (l−i+1)
2 ≤ 1 or h

σ (i)
1 ≥ h

σ (i)
2 , for h

σ (i)
2 +

h
σ (l−i+1)
2 ≥ 1, i = {1, . . . , l}.

4. E(h1) = E(hc
1)

with l = max{l(h1), l(h2)}.
Remark 9. Note that the number of values of two HFEs may be different, l(h1) �=
l(h2). Therefore, to carry out the computations correctly, both HFEs must have the
same length l.

According to the axiomatic definition of entropy for HFEs, the following
entropy formulas are defined65:

E1(h1) = 1

l(h1)(
√

2 − 1)

l(h1)∑
i=1

(
sin

π(hσ (i)
1 + h

σ (l(h1)−i+1)
1 )

4

+ sin
π(2 − h

σ (i)
1 − h

σ (l(h1)−i+1)
1 )

4
− 1

)
(42)

E2(h1) = 1

l(h1)(
√

2 − 1)

l(h1)∑
i=1

(
cos

π(hσ (i)
1 + h

σ (l(h1)−i+1)
1 )

4

+ cos
π(2 − h

σ (i)
1 − h

σ (l(h1)−i+1)
1 )

4
− 1

)
(43)

E3(h1) = − 1

l(h1) ln 2

l(h1)∑
i=1

(
h

σ (i)
1 + h

σ (l(h1)−i+1)
1

2
ln

h
σ (i)
1 + h

σ (l(h1)−i+1)
1

2

+ 2 − h
σ (i)
1 + h

σ (l(h1)−i+1)
1

2
ln

2 − h
σ (i)
1 + h

σ (l(h1)−i+1)
1

2

)
(44)
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E4(h1) = 1

l(h1)(2(1−s)t − 1)

l(h1)∑
i=1

(((
h

σ (i)
1 + h

σ (l(h1)−i+1)
1

2

)s

+
(

1 − h
σ (i)
1 − h

σ (l(h1)−i+1)
1

2

)s)t

− 1

⎞
⎠ (45)

where t �= 0, s �= 1, s, t > 0.
In Ref. 65, the cross-entropy was also introduced for HFEs and diverse rela-

tionships between entropy, cross-entropy, and similarity measures were studied.
Afterward, Farhadinia presented some counterexamples to prove that the defi-

nitions of entropy and cross-entropy introduced by Xu and Xia65 cannot discriminate
some HFEs, even though they are apparently different. Therefore, new entropies and
relationships between entropy, similarity measures, and distance measures for HFSs
are proposed in Ref. 66.

6. APPLICATIONS FOR HFSs

Once we have reviewed the concept of HFS, its extensions, different aggre-
gation operators, and measures, our aim in this section is to show the applications
based on HFSs.

The definition of HFS and its extensions have been applied mainly on decision-
making, evaluation and clustering as shown in Table I.

� Decision making: HFSs are used by experts to provide their assessments or preferences
over the set of criteria and alternatives defined in multicriteria decision making, group
decision making, multiexpert multicriteria decision making, and decision support systems.

� Evaluation: The existence of real evaluation problems that deal with uncertain and vague
information provoked by hesitation has driven to different proposals of evaluation using
HFSs.

� Clustering: Clustering refers to a process that combines a set of objects into clusters
according to the features of data. Usually, in real world, data used for clustering might be
vague and imprecise. To manage this type of data, some clustering algorithms based on
HFSs have been developed.

7. CRITICAL DISCUSSION AND NEW DIRECTIONS

The management of uncertain information in real-world problems is always
difficult and complex. The concept of HFS facilitates dealing with uncertainty
caused by hesitation. In this paper, we have shown different concepts, extensions
and tools to handle hesitant information. Since, we would like to point out some
critical comments and directions.

To manage hesitant information in real-world problems, different theoretical
models have been introduced in the specialized literature. They are necessary for dif-
ferent applications as underlined in Table I. Nevertheless, there are some weaknesses
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Table I. Applications based on the use of HFS

Applications Papers Representation Year

Multicriteria decision making Xia and Xu17 HFS 2011
Yu et al.43 HFS 2011
Farhadinia20 HFS 2012
Rodrı́guez et al.16 HFLTS 2012
Wei44 HFS 2012
Xu and Xia65 HFS 2012
Yu et al.46 HFS 2012
Lee and Chen38 HFLTS 2013
Liao and Xu67 HFS 2013
Liu51 HFS 2013
Xu and Zhang68 HFS 2013
Zhang and Wei69 HFS 2013
Liu and Rodrı́guez37 HFLTS 2014
Wei et al.39 HFLTS 2014
Zhou and Li55 HFS 2014

Group decision making Chen12 IVHFS 2013
Rodrı́guez et al.35 HFLTS 2013
Zhu and Xu40 HFLTS 2014

Multiexpert multicriteria Zhu et al.15 DHFS 2012
decision making Beg and Rashid36 HFLTS 2013

Xia et al.50 HFS 2013
Zhang and Xu42 HFLTS 2014

Decision support systems Qian et al.13 GHFS 2013
Evaluation processes Yu14 TFHFS 2013

Yu and Zhang45 HFS 2013
Clustering algorithms Sahu and Thakur70 HFS 2011

Zhang and Xu71 HFS 2012
Chen et al.63 HFS 2013
Farhadinia66 HFS 2013
Zhang and Xu72 HFS 2014

that must be highlighted.

� The usefulness of some extensions of HFS is debatable. They must be justified from a
theoretical or practical point of view and solve real problems with uncertainty.

� Too many aggregation operators for HFS have been defined without a clear justification
of their necessity. Some of them are just applications of the extension principle. It is
necessary a clear justification on their necessity and usefulness.

� Some concepts are not defined properly as we have shown in several remarks along the
paper.

� Authors use different notation to define concepts, extensions, and tools to manage hesitant
information.

Thus, some directions that should be considered to further research are the
following ones:

� It is necessary to carry out developments on the theoretical models, but their needs must
be justified.

� A new trend is the application of the theoretical models to real problems. Models that
present solutions to problems that cannot be solved by approaches already defined. It
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is necessary to justify the usefulness of the new models comparing them with previous
approaches.73

� A proposal of new aggregation operators must be justified, and their necessity and differ-
ence with the existing ones must be explained. A clear analysis of the usefulness and a
comparative study of its use should be presented.

� New concepts must be defined clearly to be understood and used suitably.
� It is necessary to unify the notation to define concepts, extensions, and tools for HFSs.

8. CONCLUSIONS

Uncertainty usually appears in many real-world problems. Fuzzy sets and its
extensions have provided successful results dealing with uncertainty in different
problems. We have paid attention to one of them, HFS, that manages hesitant
situations that often appear when the membership degree of an element to a set must
be established. This new approach has attracted the attention of some researchers
who have defined diverse concepts, extensions, aggregation operators, and measures
to handle with hesitant information.

In spite of the usefulness of the HFSs evidenced by the applications in decision
making, evaluation, and clustering, it is clear that the necessity of applying the
concepts and tools is defined to real problems. We have pointed out some future
directions and considerations that should be taken into account in the coming HFSs-
based proposals, and we have unified the notation regarding HFSs.
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29. Agell N, Sánchez M, Prats F, Roselló L. Ranking multi-attribute alternatives on the basis of
linguistic labels in group decisions. Inform Sci 2012;209(1):49–60.

30. Dong Y, Zhang G, Hong WC, Yu S. Linguistic computational model based on 2-tuples and
intervals. IEEE Trans Fuzzy Syst 2013;21(6):1006–1017.

31. Ma J, Ruan D, Xu Y, Zhang G. A fuzzy-set approach to treat determinacy and consistency of
linguistic terms in multi-criteria decision making. Int J Approx Reason 2007;44(2):165–181.

32. Tang Y, Zheng J. Linguistic modelling based on semantic similarity relation among linguistic
labels. Fuzzy Sets Syst 2006;157(12):1662–1673.

33. Wang JH, Hao J. A new version of 2-tuple fuzzy linguistic representation model for com-
puting with words. IEEE Trans Fuzzy Syst 2006;14(3):435–445.

34. Zadeh L. The concept of a linguistic variable and its applications to approximate reasoning.
Inform Sci 1975;8:199–249 (part I), 1975;8:301–357 (part II), 1975;9:43–80 (part III).

35. Rodrı́guez RM, Martı́nez L, Herrera F. A group decision making model dealing with
comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inform Sci
2013;241(1):28–42.

36. Beg I, Rashid T. TOPSIS for hesitant fuzzy linguistic term sets. Int J Intell Syst
2013;28:1162–1171.

37. Liu H, Rodrı́guez RM. A fuzzy envelope for hesitant fuzzy linguistic term set and its
application to multicriteria decision making. Inform Sci 2014;258:266–276.

38. Lee LW, Chen SM. Fuzzy decision making based on hesitant fuzzy linguistic term sets. In:
Intelligent information and database systems, volume 7802 of Lecture Notes in Computer
Science, Berlin, Germany: Springer-Verlag; 2013. pp 21–30.

39. Wei C, Zhao N, Tang X. Operators and comparisons of hesitant fuzzy linguistic term sets.
IEEE Trans Fuzzy Syst DOI:10.1109/TFUZZ.2013.2269144. In press.

International Journal of Intelligent Systems DOI 10.1002/int



HESITANT FUZZY SETS 523

40. Zhu B, Xu ZS. Consistency measures for hesitant fuzzy linguistic preference relations. IEEE
Trans Fuzzy Syst 2014;22(1):35–45.

41. Zhang H, Zheng Q, Liu T, Yang Z, Liu J. A discrete region-based approach to improve
the consistency of pair-wise comparison matrix. In 2013 IEEE Int Conf on Fuzzy Systems,
DOI: 10.1109/FUZZ-IEEE.2013.6622447; 2013. pp. 1–7.

42. Zhang Z, Wu C. Hesitant fuzzy linguistic aggregation operators and their applications to
multiple attribute group decision making. J Intell Fuzzy Syst 2014;26(5):2185–2202.

43. Yu D, Wu Y, Zhou W. Multi-criteria decision making based on Choquet integral under
hesitant fuzzy environment. J Comput Inform Syst 2011;7(12):4506–4513.

44. Wei G. Hesitant fuzzy prioritized operators and their application. Knowl-Based Syst
2012;31:176-182.

45. Yu D, Zhang W, Xu Y. Group decision making under hesitant fuzzy environment with
application to personnel evaluation. Knowl-Based Syst 2013;52:1–10.

46. Yu D, Wu Y, Zhou W. Generalized hesitant fuzzy Bonferroni mean and its application in
multi-criteria group decision making. J Inform Comput Sci 2012;9(2):267–274.

47. Zhu B, Xu ZS. Hesitant fuzzy bonferroni means for multicriteria decision making. J Oper
Res Soc 2013;64(12):1831–1840.

48. Zhu B, Xu ZS, Xia MM. Hesitant fuzzy geometric Bonferroni means. Inform Sci
2012;205:72–85.
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